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PREFACE

This report, prepared by Gregory B. Baecher of NEXUS Associates, Wayland,

Massachusetts, with assistance from D. DeGroot, and C. Erikson, under Contract

DACW39-83-M-0067, provides details for the statistical analysis of geotechnical

engineering aspects of new dam projects. It was part of work done by the US

Army Engineer Waterways Experiment Station (WES) in the Civil Works

Investigation Study (CWIS) sponsored by the Office, Chief of Engineers, US

Army. This study was conducted during the period October 1983 to September

1985 under CWIS Work Unit 32221, entitled "Probabilistic Methods in Soil

Mechanics." Mr. Richard Davidson was the OCE Technical Monitor.

This report is an introduction to practical techniques of uncertainty or

error analysis for use in geotechnical engineering. The intended audience is

the practicing geotechnical engineer with little or no background in

probability theory or statistics. A companion report, "Statistical Analysis of

Geotehcnical Data" (Contract Report GL-87-1), has been prepared under the same

contract. A third report, entitled "Statistical Quality Control of Engineered

Embankments" (Contract Report GL-87-2), has also been prepared but is inde-

pendent in content.

Ms. Mary Ellen Hynes-Griffin, Earthquake Engineering and Geophysics

Division (EEGD), Geotechnical Laboratory (GL), WES, was the Contracting

officer's Representative and WES Principal Investigator for CWIS Work Unit

32221. General supervision was provided by Dr. A. G. Franklin, Chief, EEGD,

_ and Dr. W. F. Marcuson III, Chief, GL.

COL Dwayne G. Lee, CE, was Coimuander and Director of WES during the

publication of this report. Dr. Robert W. Whalin was Technical Director.
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ERROR ANALYSIS FOR GEOTECHNICAL ENGINEERING

PART 1: INTRODUC~TION

Background

Good engineering practice requires that the possible magnitude and

direction of errors in engineering performance calculations be systematicaly

evaluated. Traditionally, geotechnical engineers have used sensitivity

analysis to perform such evaluation. However, advances in geotechnical testing

and modeling allow benefits to be taken of the more advanced, quantitative

approaches to error analysis common in other branches of engineering. 1hese

techniques provide an explicit procedure for assessing uncertainty and error in

engineering predictions and are easily tailored to the needs of geotechnical

engineering practice.

Purpose

The purpose of this report is to provide potential users of error analysis

methods in geotechnical engineering with a practical introduction to concepts,

definitions, and techniques. The report is not exhaustive* The intent of the

report is to provide sufficient detail to allow a reader already versed in

geotechnical engineering but not in probability or statistics to undertake

error analysis for routine problems encountered in geotechnical engineering

practice. This report complements materials presented in "Statistical Analysis

of Geotechnical Data," Contract Report GL-87-1, and presumes familiarity with

hnn statistical representations of soil parameter estime-s up to the level of that

companion report.
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General Description of Error Analysis

The general approach to error analysis involves three phases: (a)

identification of possible sources of error, (b) assessment of the magnitude of

error possibly contributed by each source, and (c) determination of the

influence of each source of error on calculated results. 1he product of an

error analysis is a quantified statement of the confidence to be placed on

predictions of a structure's performance which result from engineering

calculations. This statement of confidence represents the cumulative effect of

the uncertainties inherent to data collection and interpretation, and

engineering modeling.

Report Organization

This report is organized in five sections. Following the introduction,

Section II describes the sourses of error and uncertainty in geotechnical

analysis. Part III presents mathematical techniques for calculating the

effects of those errors and uncertainties on predictions of facility

performance. Part IV introduces the concept of a reliability index to provide

a single measure of safety incorporating both the best estimate of factor of

safety and the potential error in the best estimate. Finally, Part V discusses

the use of risk analysis in making geotechnical engineering design decisions.

V 9
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PART II: SOURCES OF ERROR IN GEOTECHNICAL ANALYSISt

Many uncertainties affect geotechnical predictions. Some can be quantified,

some not. In an approximate way these uncertainties can be divided into five

main groups:

I Site conditions,
I Loads,
I model inaccuracies,
I Construction and quality control problems, and
I omissions and gross errors.

The most important for engineering analysis are the first three. Site

condition, loads, and models appear in calculations, and the uncertainties

associated with them are quantifiable. in contrast, uncertainties caused by

construction or quality control problems and by omissions or errors do not

appear in calculations, and they are seldom quantifiable. These uncertainties

are accomodated in other ways, as for example, by quality assurance or by

design checking.

Error in Geotechnical Calculations

If attention is restricted to geotechnical aspects of calculations, the

principal uncertainties that must be dealt with are site conditions and

geotechnical models, and a further and more specific subdivision of sources of

errors is possible. This leads to four sources which are the focus of error

analysis:

1. Soil variability.
2. Measurement noise.
3. Measurement and model bias.
4. Statistical error due to limited measurements.

t Part II summarizes background materials from the companion report,
"Statistical Analysis of Geotechnical Data," (Contract Report GL-87-1).
Readers conversant with that report may wish to skip forward to Part III.
Readers desiring further discussion of the material in Part II are referred to
the companion report.
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These are the sources of uncertainty which affect calculated predictions. The

first two, soil variability and measurement noise, appear as data scatter (Fig.

1).* The latter two, measurement or model bias and statistical error, cause

systematic error in predictions.

Data Scatter

The scatter among geotechnical measurements is usually large. This scatter

reflects two things: (a) real variability within a soil deposit and (b) random

measurement error or 'noise'. A major benefit of statistical analysis is the

ability to separate real variability from noise, and thereby lessen the

magnitudie of data scatter and reduce uncertainty.

In any real soil deposit, engineering properties vary somewhat from point

to point, even within a stratm or zone that otherwise appears uniform. This

real or spatial variation leads to differences in the way individual elements

of a soil deposit behave. Unlike differences in soil properties among strata

or zones, this form of spatial variation is not usually accouanted for

deterministically in a soil model. As a result, it causes uncertainty in

predictions of how individual elements of the soil mass perform.

Random measurement error in contrast to real soil variability is

extraneous 'noise' in soil property measurements. It is caused by operator or

instrumental variations from one test to the next. it does not reflect real,

variations in soil properties, except possibly on a very small scale (eeg.,

shell fragments or pebbles that distort test results).* Nevertheless, unless

steps are taken to assess the magnituxie and importance of random measurement

error, it cannot be distinguished from real variation in soil properties.

ja11



Thus, noise increases the uncertainty in soil properties estimates and leads to

greater conservatism in design than would otherwise be necessary.

Systematic Error

Systematic error is bias. if a systematic error of, say, 10% in some soil

property is made at one location, the same 10% error is made everywhere. The

distinction between spatial variation and systematic error is important. The

uncertainties caused by these two sources affect engineering calculations in

different ways. Pbr example, uncertainties due to spatial variation lead to a

high likelihood of some fraction of a facility performing inadequately.

Uncertainties due to systematic error, on the other hand, lead to a small

likelihood of the entire structure performing inadequately.

In soil property estimation, systematic error is caused in two ways: (a)

bias in measurement techniques and the models used to interpret measurements,

and (b) statistical estimation error. measurement and model bias is common in

geotechnical engineering. it is caused by suc~h things as soil disturbance, or

by a difference between how a property is measured and how a structure imposes

loads, or by simplifications in how soil behavior is modelled. Statistical

bias is also common. It is caused by limited numbers of data.

Combining The Sources of Uncertainty

Together, data scatter and systematic error constitute the major

uncertainties of geotechnical calculations. However, the effects of these

components differ, as do the way each propagates through an engineering model.

The most important concept of error analysis has nothing to do with

mathematics, it has to do with separating these sources of uncertainty.

12



Error analysis is based on, (a) separating the sources of error in

geotechnical predictions, (b) analyzing the individual effect of each source of

error on an engineering prediction, and (c) combining the effects of each

source of error to obtain the overall reliability of a prediction. Error

analysis treats calculations and engineering models. It is not 'probabilistic

design;' it is more akin to quality control. The result of error analysis is a

reliability index which summarizes the overall confidence that can reasonably

be placed in an engineering calculation.

Fig. 2 shows how the procedure is used. At the beginning, statistical

methods are used to estimate the four components of uncertainty from laboratory

tests, field data, and various geotechnical considerations. These components

are combined in a design profile used as input for modeling. In contrast to

traditional methods, this design profile is not a conservative estimate of soil

properties, but a 'best' estimate. Uncertainty is accomodated by specifying

standard deviation envelopes on the profile. The best estimate profile is used

as input to the geotechnical model to obtain a best estimate of facility

performance, for example, a best estimate of factor of safety, F. The

envelopes expressed as standard deviations are propogated through the model to

obtain a corresponding envelope or standard deviation on the prediction, e.g.,

a standard deviation on F. The mean and standard deviation of the prediction

are combined in a so-called reliability index (Part IV) to provide a measure of

confidence.

Describing Uncertainty

Assessments of soil properties for most purposes are adequately expressed

by two numbers, (a) a best estimate, and (b) a measure of uncertainty. The

13



average value and the standard deviation, respectively, are used to express

these two attributes. When more than one property is estimated, another

attribute becomes important. his is the association between the uncertainties

in different parameter estimates. The Correlation coefficient is used to

express this association.

Average = 'Best Estimate'

The average or mean of a set of measurements x = {xl,..s,xnl is denoted

mx and defined as,

mx = I "mean" (1)

n1

In effect, the mean is the center of gravity of the measurements along the

x-axis. It is used as the best single-valued estimate of x.

The compaction control measurements shown in Fig. 3 show water content and

density data. In Fig. 4 the same data are displayed as histograms, showing the

number of measurements falling within specified intervals. The mean of the

water content data using Eqn. I is mx = 0.45%; the mean of the compaction data

is mx=98.7%.

Standard Deviation - 'Uncertainty'

The standard deviation of the measurements x is their variation with

respect to the mean, expressed as the square root of the sum-of-squared

variations,

PO 8 1 - standard deviation" (2)
x n-1 E (xi- mx)2

14
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In effect, the standard deviation is the root of the moment of inertia of the

data about the mean. s x measures the dispersion or uncertainty about the value

of x. The standard deviation of the data in Fig. 3 is calculated by 3qn. 2 to

be sx= .3% for the water content data and Sx- 2 . 6 % for the compaction data.

The proportional uncertainty or standard deviation normalized by the mean

is called the coefficient of variation and denoted Ox,

Qx - Sx/mx - "coefficient of variation" (3)

The coefficients of variation of the data in Fig. 3 are Q*-1.3%/0.45%-2.89 for

water content, and Qx-2.6%/98.7=0.03 for compacted density.

Just as in mechanics it is often convenient to deal with the moment of

inertia, rather than its square root, so, too, in analyzing uncertainty it is

often convenient to deal with the square of the standard deviation rather than

sx itself. The square of the standard deviation is called the variance,

Vx - Sx2 - "variance" (4)

Given the similarity of equations 1 and 2 to mechanical moments, the mean and

variance are often called the first and second (statistical) moments of the

uncertainty in x.

Correlation Coefficient

When dealing with two or more soil properties, uncertainties in estimates

may be associated with one another. That is, the uncertainty in one property

estimate may not be independent of the uncertainty in the other estimate.

15
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Consider the problem of estimating 'cohesion' and 'friction' parameters of a

I4ohr-Coulomb strength envelope. If the slope of the envelope to a set of !ohr

circles is mistakenly estimated too steeply, then for the line to fit the bulk

of the data the intercept must be made too low. The reverse is true if the

slope is estimated too flat. Thus, uncertainties about the slope and about the

intercept are not independent, they relate to one another.

The correlation coefficient for paired data x,y { (x1,Yl), ... , (xnY n ) }

is denoted rxy, and defined as,

1 x i -m x Yi_
rxy - r (- (- -) ( Y) - 'correlation coefficient" (5)

In effect, the correlation coefficient is equivalent to a normalized product

moment of inertia in solid mechanics. It expresses the degree to which two

parameters vary together. The correlation coefficient is non-dimensional

because deviations of x and y from their respective mains are measured in

units of the respective standard deviations.

The value of rxy may vary from +1 to -1. rxy-+1 implies a strict linear

relation with a positive slope, perfect correlation. rxy--1 implies a strict

linear relation with a negative slope, perfect inverse correlation. rcyMO

implies no association at all, independence. Fig. 5 shows scatter plots with

various rxy values.

The corresponding dimensional form of 3 n 5, that is, using the absolute

deviations of x and y rather than normalized deviations, is called the

covariance and denoted,

16
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CXY - n2 (x i - mx)(yi - my) - "covariance" (6)

From the definitions of Ekns. 5 and 6,

rxy SXBy

Au tocovariance

Thus far, the fact that soil properties are spatial variable has been

ignored. Soil properties have not only magnitude but also location. The

spatial quality of soils data has important implications for it both strongly

affects engineering predictions and increases the amount of information that

can be squeezed from a testing program. The salient aspects of spatial

variability from an error analysis view are analyzed using a statistical

concept called autocovariance.

In an approximate way, spatial variability of data can be summarized by

two measures: the variance of the data about their mean, and the waviness or

frequency content of the variability in space (Fig. 6). * he longer the period

of this 'waviness' the further the data may be spatially extrapolated.

Autocorrelation is used to measure 'waviness.'

Autocovariance measures the statistical association between data of the

same type made at separate locations. Fbr example, the properties of two

adjacent soil elements tend to be similar. If one is above average, the other

tends to be above average, too. They are associated. (onversely, the

17



properties of widely separated elements are not necessarily similar. If one is

above average, the other may or may not be. They are not associated. This

association of properties in space can be measured by the correlation

coefficient of Eqn. 5 and is called autocorrelation because the data are all of

the same type.

For data xi, where i = the location of the measurement, the autocorrela-

tion of data separated by interval 6 is,

IX6 nj (xi - mx ) (xi+8 - m x )  (8)
Rx(6) (n6-)V x iI

the sum taken over all pairs of data having separation 6, their number being

n 6 . Eqn. 8 applies to the case in which the mean of x is constant in space.

More general cases are considered in the companion report, "Statistical

Analysis of Geotechnical Data" (Contract Report GL-87-1). Autocovariance is

related to autocorrelation as covariance is to correlation. The

autocovaraiance of data at points separated by a distance 6 is,

Cx(6) - (_ _Ii ( (xi-mx) (xi+6-mx) ,

Autocorrelation expressed a function of separation distance 6 is said to be

the autocorrelation function, and autocovariance expressed as a function of

separation distance is said to be the autocovariance function.

Figure 7 shows the autocorrelation function for standard penetration test

blow count data measured in a silty hydraulic fill. Fbr convenience, the

autocorrelation or autocovariance function is often indexed by the distance at

18



which it decays to 1/e of its original value, in which e is the base of the

natural logarithms. For Fig. 7, this distance is about 100 feet.

E timating Uncertainty

This section considers specific procedures for quantifying the

uncertainties identified above. More detail is provided in the report,

"Statistical Analysis of Geotechnical Data" (Contract Report GL-87-1).

Data Scatter

The scatter in soil data reflects two things (spatial variability and

noise) but it is measured by a single parameter, the data variance, Vx.

Therefore, it is not possible to separate soil variability from measurement

error simply by inspection; another approach to estimating the fraction of data

scatter contributed by either of these two sources must be used. The most

convenient and accurate is through the autocovariance function. The

autocovariance function reflects the spatial structure of variability in a set

of data. This structure differs depending on how the scatter is divided

between spatial variability and measurement noise. Ehch component has a

characteristic signature in the autocovariance function.

As a good approximation, measurements taken in the laboratory or

field can be modelled as,

z = x + e , (10)

in which z is the measurement, x is the real soil property, and e is random

N measurement error. After some algebra, the autocovariance function of the set

of measurements turns out to be related to the autocovariance functions of x

and e by,
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Cz(6) Cx(6) + Ce( 6) (11)

The autocovariance of x equals Vx at 6=0, and approaches 0 as 6 increases. The

autocovariance of e, on the other hand, equals Ve at 6=0, but equals 0 for any

6*0, that is, it is a spike. This is due to the assumption--and empirical

observation--that noise is independent from one test to another. Thus, for 6*0

the covariance of the els is zero. Therefore, by extrapolating the observed

autocovariance function back to the origin, an estimate of Vx and Ve is

obtained. This is shown in Fig. 8. In this case the variance of the

measurement noise is about 50% of the data scatter. Fbr other in situ

measurements and other soils, measurement error variances have been found to

contribute anywhere from 0 to as much as 70% of the data scatter (e.g.,

Baecher, Marr, Lin, and Consla, 1983).

Systematic Error

The principal sources of systematic error are statistical estimation

error, and measurement or model bias.

Systematic error due to statistical estimation of soil parameters is

calculated from statistical theory. The most significant of these errors is

in the mean soil property. As an approximation, although a robust one, the

variance of the statistical error in this mean is,

Vm  Vz/n , (12)
x

4'

in which n is the number of measurements. Note, although random measurement

error can be eliminated from the data scatter variance to yield a reduced
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uncertainty, it does contribute to statistical error. Its effect on

statistical error can only be lessened by making more measurements.

Statistical errors in the estimates of other parameters, for example, the

variance of soil properties, also exist and can be readily calculated; however,

in most cases they have only a second-order effect on predictions and may be

safely ignored.

The last of the major sources of uncertainty, measurement and model bias,

is the most difficult to estimate. Usually, the only way to do so is by

comparison of predicted with observed performance or by field-scale

experiments. This has been done by Bjerrum (1972) for field vane strengths of

normally consolidated clay, and has been attempted by other workers for other

measurements. Such an approach aggregates a large number of uncertainties or

biases together, including those due to inaccuracies of theory and method of

analysis. In other endeavors, such as assessing nuclear site safety,

measurement and model bias are sometimes subsumed under the name, model

validation.

In the case of Bjerrum's work, the joint effect of bias in the field vane

procedure and bias in 2D stability analysis based on modified Bishop method

leads to the correction factor shown in Fig. 9. The best estimate of this

correction factor, p, as a function of plasticity index is its mean, m., given

plasticity index. The variation of back-calculated U's about the mean is

summarized in a variance V which expresses the uncertainty in knowledge about

the bias term.

Autocovariance

This section considers a simple and often used approach to estimating

autocovariance, the moment estimate. More detailed discussion of the
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statistical aspects of estimating autocovariance is presented in DeGroot (1985)

and in "Statistical Analysis of Geotechnical Data" (Contract Report GL-87-1).

Consider the case of measurements at equally spaced intervals along a

line, as for example in a boring. Presume that the measurements x =

{xl, ... ,Xn} contain no measurement error. The observed autocovariance of the

measurements at separation 6 is,

Cx(6) Z (xi-mx)(xi+6-mx) (13)

in which n6 = the number of pairs of data at separation distance 6 and the mean

mx is assumed spatially constant. This is called the sample autocovariance.

The sample autocovariance is used to estimate the real autocovariance Cx(6) for

separation distance 6.

In the general case the measurements are seldom uniformly spaced and, at

least in the horizontal plane, seldom lie on a line. Fbr such situations zgn.

13 can still be used, but with some alteration. The most common way to

accomodate nonuniformly placed measurements is by dividing separation distances

into bands, and then taking the averages of aqn. 13 within those bands. This

introduce some bias into the estimate but for most engineering purposes it is

sufficiently accurate.

Design Profile

The total uncertainty in engineering properties at a point in the soil

profile reflects the combination of data scatter and systematic error. Fbr

H modeling purposes it is convenient to draw a design profile of soil properties

vs. depth. About this profile are drawn two sets of standard deviation

envelopes. one set describes point to point variability. The other set

describes uncertainty in the mean.
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( uncertainty ) = ( soil ) + (statistical) + (measurement)
in x variability uncertainty uncertainty (14)

I __ I I _ _ _ _

= spatial + uncertainty (15)

variability in mean

As discussed in Part III, the contributions to uncertainty in a soil property

x add together through their respective variances. That is, the variance of x

is found by summing the variance of spatial variability and the variance in the

mean,

Vx,total mVx,spatial + VEX (16)

in which Vx,total - the total variance of the soil property x, estimated at a

point location, Vx,spatial - the variance due to spatial variability of the

soil property, and Vmx= the variance due to uncertainty in the mean of x. The

variance due to spatial variability is

Vx,spatial Vz-Ve (17)

in which Vz = the variance of the data scatter (i.e., measurements,) and Ve

the variance of the measurement noise. The variance of the uncertainty in the

ru mean of x is,

Vm  - Vx,statistical + VB (18)

0.
SKI in which Vxstatistical - the variance due to statistical error in the mean,

and VB - the variance due to measurement bias.

23

- A C C -A -- p 5 f - -. -



Since the contribution of random measurement error appears only in its

effect on statistical error, this means that Vx in specific instances can be

considerably less than the data scatter variance Vz .

Returning to the measurement model of Eqn. 10, but applying a measurement

bias correction (i.e., calibration) factor B,

z = Bx + e . (20)

The factor B is an unknown constant that influences the measurement of the

actual soil property x. As developed in the report "Statistical Analysis of

Geotechnical Data" (Contract Report GL-87-1), the variance of z is related to

the variances of B, x, and e by

2 2 (1
V = mB V + m V +V (21)
z B x x B e

Solving for the variance of x

Vx = (1/MB2 ) (Vz-Ve) + NIX2 VB/mB2  , (22)

= (1/IB2 ) (Vz-Ve) + Nex2 QB2

in which VB is the uncertainty in the appropriate value of the bias correction

B. For example, for field vane data, VB is found from the scatter of

calibration data of the type compiled by Bjerrum (1962). The first term in the

right-hand-side (RHS) of Eqn. 22 is the contribution of spatial variation of

soil properties to uncertainty in x; the second term is the contribution of

uncertainty about B to uncertainty in x. Since uncertainty about the proper
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value of B always increases the uncertainty in an estimate, whether in going

from x to z or z to x, its contribution is always positive.

The effect of statistical error in the mean mx, due to limited numbers of

measurements, adds directly to the RHS of Bqn. 22, as suggested by Eqns. 16

and 18. From 3qn. 12 the variance of the statistical error in mx is,

Vmx = Vz/n - (Vx + Ve)/n • (23)

Note that, although measurement noise can be removed from the data scatter, it

still retains an effect on statistical uncertainty

The overall error in the estimate of soil properties at any point in the

soil mass is found by combining the individual contributions of soil

variability, measurement bias and statistical error to obtain,

uncertainty measurement
in soil ) - ( spatial ) + ( bias + + ( statistical ) (24)

property x variability uncertainty uncertainty

-x (i/mB2) (VzVe) + 2 1 2 Vz/n (25)

The first term on the RHS of Bqn. 25 is the uncertainty caused by scatter of

the data about a trend in space. The combined effect of the second and third

terms is the uncertainty on the trend itself.

Example: Field Vane Strength Data

The field vane (FV) strength data of Fig. 10 were collected in 40 borings

along the axis of a proposed embankment. The strength profile for end of
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construction (i.e., undrained) conditions was estimated on the basis of the

field vane data. From visual inspection the mean field vane strength in the

marine clay appears approximately constant with depth, below a weathered

crust. Data classified as in the crust were treated separately from lower

data, while high strength outliers within the non-crust material were

eliminated.

The mean and variance of the FV data in the marine clay are shown in Table

1 . The coefficient of variation of 20 to 30% is large although not exception-

ally so. Analysis of the spatial structure variability about a constant mean

yields estimates of the vertical and horizontal correlation distances for the

marine clay of about 1m and 30m, Figs. 11 and 12. Extrapolating the autoco-

variances back to the origin yields an estimate of 20kPa2 for the noise (Fig

13). Note, to the extent that the apparent spike at r-0 is due to small scale

variability, rather than noise, the estimated "measurement error" from the

vertical and horizontal directions need not be the same. However, in the

present case they appear to be.

The statistical error is approximately,

Vm  = Vz/ 40 - 1.66 kPa2  , (19)

x

which assumes tests to be independent. Given the separation of the tests

relative to the autocovariance distances, this assumption seems satisfactory.

Measurement bias for the profile derives from errors introduced by the FV

device and simplified Bishop analysis. For this purpose, Bjerrum's (1972) FV

correction factor, U, was used (Fig. 9). Bjerrum's U is found by comparing

measured undrained strengths using the FV with undrained strengths
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backcalculated from observed slope failures. For the marine clay (PI-20) at

the site, m-=1.0 and the uncertainty in U reflecting the scatter about the best

fitting curve of Fig. 9 was estimated using regression analysis to be QM=0.075.

Thus, having estimated each of the component variances of Eqn. 14 the

design profile can be developed. The average undrained strength with depth is

approximately constant, mu-34.5 kPa, and the variance is found by BlIn. 14. The

result is shown in Fig. 14. The innermost envelopes show ± one standard

deviation of the systematic uncertainty (i.e., error in the mean). The outer

envelopes show ± one standard deviation of total uncertainty for soil

properties at a point. The total uncertainty is the sum of spatial variation

plus uncertainty about the mean, calculated using Eqn. 16.

Example: SPT Blow Count Data

The boring program at the site of a low earth dam consisted of

approximately 63 standard penetration test borings located along the dam axis

and along a section perpendicular to the axis at the spillway location (Fig.

15). Additional borings were concentrated in a zone along the axis between

stations 27+50 and 37+00 where deep solution activity was discovered in the

limestone foundation.

An interpreted profile along the axis is shown in Figure. 16. The soil

conditions along the axis can be roughtly divided into three sections on the

basis of SPT blow counts: Station 4+00 to 13+00, 17400 to 24+50, and 2500 to

32+00. Blow count data for the three sections are shown in Figs. 17, 18, and

19; and summarized in Table 2.

The average blow counts increase from low to high station across the dam

axis. The soils underlying the right wing of the dam have very low N values.
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The blow count data in each section closely follow a Normal distribution of

relative frequency. This trend is exhibited in probability-grid plots, in

which Normal distributions of frequency plot as lines, but is less obvious

simply by inspection of the corresponding histograms. The coefficients of

variation in each section are approximately constant at 50%. The blow count

data were not corrected for overburden.

The spatial structure of the blow count data was investigated directly on

the raw blow counts and on detrended blow counts. The autocovariance function

for the non-detrended average blow counts in each boring is shown in Figure

20, estimated using Bqn. 13.

The upper plot shows the mean estimates calculated as per Bauation 19.

The lower plot shows variation about the mean estimate, represented as:

T + maximum

i + 75 th fractile

X +- mean

+ median

I 25th fractile

- minimum

the value of CN(6) at 6=0 is the variance of the boring-averaged blow count

data across the site. From Fig. 20 the variance of average blow counts in each

boring is about 6.0 bpf2 , and and the autocorrelation distance is about 350'.

A corresponding autocovariace function for individual data at elevation

660 is shown in Figure 21. The variance of these data is 12.5 bpf2 , and the

autocorrelation distance is about 200 to 250'. The strong spatial structure

in both cases is due to the trend of blowcounts along the embankment axis.
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Measurement noise in the data was estimated using the autocovariance

function. By extrapolating the sample autocovariance of z back to the origin

at 6-0 an estimate of both Vx and Ve is made. An interesting finding from the

blow count data at the dam site is that the measurement error in the data

appears to be very small. This is surprising. SPT blow counts are widely

thought to be noisy measurements and have been shown elsewhere to have noise

components in excess of 50%. The small measurement noise in the present data

can be inferred from the autocovariannce function. There is essentially no

discernable spike at 6-0, and thus the variance of the measurement error Ve

would appear to be about zero.

The reason that measurement noise in these SPT data appears to be so low

may have to do with the looseness of the alluvium and the consequent low

average blow counts. A more detailed discussion of the statistical analysis of

these data is presented in the report "Uncertainty Analyses for Dam Projects,"

Final Report, Contract Report GL-87-4.

Systematic error in the blow count profile is normally caused both by

measurement bias and by statistical uncertainty. In the present case involving

blow count data there was little reason to suspect serious measurement bias.

The data are used directly in constructing a soil property profile, rather than

being translated into a more fundamental parameter such as strength or

deformability. Therefore, there is no transformation by which bias is

introduced. While field operations themselves may introduce bias in SPT data,

there was no reason to suspect such bias in the present case. As a result,

they were neglected.

Statistical error on the mean was estimated using Eqn. 12. Typically

there ware about 20 blow count measurements at any one depth, given that the
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axis was divided into three zones. Obviously, by dividing the site into zones

a closer fit to the mean properties in each zone can be made, but at the s e

time the number of data used to estimate the means goes down.

The results of the analysis of the blow count data are shown in Figures

22, 23, and 24, in which the mean profile and standard deviation envelopes are

denoted as:

mean

-standard deviation of mean standard deviation of mean
mean plus spatial variation r II -- I mean plus spatial variation

t standard deviation of mean

The inner envelopes are ± one standard deviation of the uncertainty in the mean

and the outer envelopes are ± one standard deviation of the error in the mean

plus the spatial variation. Uncertainty in groundwater level is denoted by a

mean and ± one standard deviation of the spatial variation.

Use of the Design Profile

The design profile provides a means for sumamarizing the magnitud~es of

potential error in the soil properties that are used as input to engineering

analyses. Importantly, it separates systematic errors in the mean from spatial

variations one location to another. In the next pert of this report, the

design profile is used as quantitative input to a geotechnical analysis--for

example, a slope stability calculation, or a settlement calculatio-n--in order

to assess the effect of uncertainty on predicted factors of safety or another

prediction. In that assessment, the importance of systematic errors and

importance of spatial variations are very different.
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Table 1. Component Variances for Field Vane Data in the Marine
Clay.

Component Variances for Undrained Strength Profile

Variance Component Marine Clay Lacustrine Clay

Mean, Mx 34.5 kPa 31.2 kPa

Variance Components:
Spatial, Vx  39.9 72.0
Measurement noise, Ve 26.4 0
Data scatter total, Vz 66.3 kPa2  72.0

Statistical error, V./n 1.7 2.0

easurement/Model Bias, Va 5.3 21.9

Total Variance, Vxtotal 83.3 kPa2  95.9 kPa2

(point-to-point)
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Table 2. SPT Summary Statistics for Carters Project Reregulation
Dam.

SPT SUMMARY STATISTICS FOR RERBGULATION DAM FOUNDATION

mean standard coefficient length
section (bpf) deviation of variation (feet)

(bpf)

Station 4+00 to 13+00 4.8 2.9 0.60 900
Station 1700 to 24+50 6.9 2.8 0.41 750
Station 2500 to 32+00 8.9 4.4 0.49 700

0.
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Table 3. Component Variances for Factor of Safety Calculation in
Embankment Stability Analysis.

Principal Uncertainties in Stability Calculation

Variance

Parameter Symbol Systematic Spatial TOTAL

Effective friction angle of fill of 3.0 4.0 .2

Density of fill YFILL 160 2.0 tcm2

Depth of dessicated crust Dcrust 0.036 1.0 M2

Depth to till Dtill 10 1.0 m2

Undrained strength of lacustrine clay cu(L) 24.9 99.7 kPa2

Undrained strength of marine clay cu(M) 7.6 47.6 kPa2

I
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Figure 1 -- Sources of Error or Uncertainty
in Soil Property Estimates.
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Figure 2 -- Error Analysis Procedure.
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PART III: ERROR PROPAGATION IN ENGINEERING CALCULATIONS

This section explains the concept of error propogation in engineering

calcuations and presents mathematical techniques for analyzing the magnitude of

uncertainty in predictions.

A number of mathematical methods for error analysis are described. The

most widely used of these methods is the first-order technique. This technique

is described in greater detail. Four other methods are described briefly.

These are point estimate techniques, response surface techniques, ajoint

sensitivity, and Monte Carlo simulation.

Concept of Error Propagation Analysis

Engineering analysis uses soil property estimates made from measurements

by incorporating them in models. These models are based on engineering

mechanics and relate soil properties, loads, and other aspects of a design to

predicted performance. Traditionally, point estimates of properties, loads,

and other conditions are entered into the model and point estimates of

performance are calculated. For example, to predict settlement of a footing on

sand, data are used to make a best estimate of soil properties. This best

estimate, perhaps modified to be conservative, is used as input to a settlement

formula (i.e., a model). A best estimate of settlement is calculated from the

formula as a function of load.

If errors have been made in estimating soil properties, then the

settlement predicted by the formula will also be in error. The error in input

is said to propagate through the model to cause an error in the output (Fig.

25). Sensitivity analysis is generally used to assess the effect of input

errors on output. In sensitivity analysis a number of calculations are made
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using various estimates of input soil properties. The variation in calculated

settlement caused by the variation in input soil properties indicates the

sensitivity of the prediction to potential error in the input soil properties.

Sensitivity analysis works well when one input parameter is involved and

when spatial variability of soil properties is not important. When more than

one input parameter is uncertain or when spatial variability exerts a

significant influence, sensitivity analysis does not work well. In these more

complex situations sensitivity analysis provides no mechanism for considering

combinations of uncertainties. In such cases a systematic accounting of the

way errors in input translate to errors in output is needed. This systematic

accounting is error analysis.

With error analysis, all calculations are based on best estimates of input

parameters, avoiding conservatism as much as possible. The output of a

calculation is the corresponding best estimate of facility performance.

Uncertainty is incorporated using standard deviations and correlation

coefficients. The techniques of error analysis allow the effect of standard

deviations and correlation coefficients on input parameters to be translated to

corresponding standard deviations and correlation coefficients on output (i.e.,

performance predictions). These standard deviations and correlation

coefficients express the uncertainty or potential error in a calculated

prediction. Using error analysis the joint result of a settlement calculation

is a best estimate of settlement and a standard deviation on settlement.

First-Order Technique

The most common approach to error propogation is the first-order

technique. This is also sometimes called the first-order second-moment method
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(FOSM) . This technique is based on a linear approximation to the model which

relates soil properties to performance predictions, and hence is 'first-order'.

Because the technique uses only the means, standard deviations, and correlation

coefficients of the soil properties, it is said to be a 'second-moment' method.

Consider the model relating an input soil parameter x to the performance

prediction y through some form of equation(s),

y = g(x) (26)

The model g(x) can be analytical, numerical, empirical, etc. This model can

be linearized by expanding the right hand side (RHS) in a Taylor's series

about some point x-n,

y = g(n) + i(n)(x-rn) i(n)(x-n) 2 + see (27)11 + 21

If the RHS is truncated to the first two terms, an approximation of y as a

linear function of x is obtained.

Mean or Best Estimate Prediction

Applying probability theory to the truncated version of Eqn. 27, the

following result is obtained:

my g(mx )  (28)

in which - indicates first-order (i.e., linear) approximation. In words, the

mean or best estimate of the prediction y is the function of the mean or best

estimate of the parameter x. This is the normal deterministic solution using
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the best-estimate (mean) soil property as input. If the prediction of y

depends on a set of parameters {x ,. •,xk} the equivalent form of Eqn. 28 is,

my ! g(mx1F .. ,mXk) (29)

in which mx, = the mean of xj, and so on.

Uncertainty (Standard Deviation) in Predictions

Again applying probability theory to Eqn. 27, a second result is obtained

concerning the relationship of the standard deviation of the prediction y to

the standard deviation of the input parameter x,

S =" (ax) sx  (30a)
y dx

Vy = (d.)2 Vx (30b)dx

In words, the standard deviation of the prediction y is the product of the

standard deviation of the parameter x and the derivative of y with respect to

x. The derivative of y with respect to x might be thought of as the

sensitivity of y to changes in x. By squaring both sides a relationship is

obtained between the variance of y and the variance of x. Again, these results

are based on a linear approximation to g(x), but for most geotechnical problems

they are sufficiently accurate.

Plate I shows a simple calculation of bearing capacity for an unembedded

footing in which the only source of uncertainty considered is data scatter.
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The data on friction angle are taken from laboratory tests, and bearing

capacity is calculated using Terzaghi's bearing capacity factor NY. Fbr

illustration, this factor is related empirically to 4' by the approximate

equation N 0.01e 0 . 2 5 ' (Scott, 1963). The mean value of bearing capacity is

found by substituting the mean value of tan 4' in the empirical equation and

then into the bearing capacity formula. A more complete analysis replacing

Scott's formula by experimental data is given by Ingra and Baecher (1983).

If the prediction y depends on a set of parameters, the equivalent form

of Eqn. 30 is,

Vy ! E dg dg (31)= dx i dxj i j

in which Cxi,x j = the covariance of x i and xj. When all the x i and xj are

independent of one another, each of the covariance terms for i*j is zero. The

covariances for i=j by definition are simply the variances of the xi (Cf.,

Eqns. 2 and 6). Thus, for this special but common case Eqn. 31 reduces to,

V E (d )2 Vxi (32)yi

Plate 2 shows a slope stability calculation for an embankment constructed on

soft clay. The field vane data for these foundation soils are shown in Fig.

10.

Two other special cases deserve note because they are common in practice

and lead to simple results. Fbr the case in which y is a linear combination

of a set of independent parameters y = Zaixi, Equation 32 becomes,
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V y a 2 V,(33)

For the case in which y is a power function of a set of independent parameters,

y = W xiai, Equation 32 becomes, approximately,

1 + 2 - (I + ai2 2) (34)

which for small coefficients of variation (Qx<0. 3 ) reduces to,

Q2 y --_ Eai2 g2xi (35)

Correlations Among Predictionst

The general form of Eqs. 20 and 21 when a set of predictions Y = {yl,

...,Yh} is calculated from a set of soil properties X - {x1 , ...,Xk} is,

my = g(mx), and

EY = GtZxG,

in which my = {my1,...,myh}, Ey = the covariance matrix of Y, and EX is the

covariance matrix of X. Ey has ijth term Cyi,y j and EX has ijth term Cxi,xj .

G is the matrix of derivatives with ijth term dyi/dxj. he diagonal terms of

Ey give the variances of Y1,...,yh, the off-diagonal terms give the covariances

of YiYj. The correlation between yi and yj can be found from 31n. 7.

t This section is given for completeness, but may be skipped on first reading.
A more complete presentation of advanced topics in error analysis is given by
Ditlevsen (1981).
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Size Effect Factor

The volume of soil influenced by an in situ test or contained in a

laboratory specimen is small compared with that influenced by a prototype

structure. Th make predictions of how the prototype will perform, one needs to

estimate average properties within this larger representative volume of soil,

and the variability among the average properties of representative sized

volumes.

This is done by assuming the representative volume to be composed of a

large number of smaller elements, for example, each the size of a test

specimen. From the formulas in Part II the mean and standard deviation of the

properties of specimen sized elements are calculated, then using the spatial

structure described by the autocorrelation function, a mean and standard

deviation for the larger representative volumes is calculated. These

calculations are summarized in a size-effect factor, R, which in many cases can

be expressed by simple formulas or can be tabulated.

Spatial Averaging

The most important application of the size effect factor occurs in the

case where average properties within a large volume of soil control the

* engineering performance of a facility.

Empirically, the variability of the average soil properties within small

elements of soil is larger than the variability of the average properties

within large elements. Within a small volume physical properties tend to be

• ,more or less uniform throughout. Some individual elements may have greater

than average strength, say, while some may have less than average, but within
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* any one element there is little variability. There is more variability among

the average properties of different elements than there is within a single

element. Within large volumes the opposite is true, there tends to be a

mixture of high and low properties. Thus, with small volumes the properties of

individual elements may vary sharply from the mean across the site, but with

large volumes internal variations balance out and the average property from one

large element to another differs very little. The mean of large volumes

remains the same as the mean of small volumes, but the standard deviation of

the average property from one large volume element to the next is small. There

is more internal variability within large elements than there is among the

average of one element to the next.

The extent of averaging of properties within a large volume of soil

d depends on the structure of the spatial variation of the soil properties. More

precisely, the extent of averaging depends on the standard deviation of

properties from point to point and on the autocorrelation function.

Consider the one-dimensional problem of calculating the variability of

average SPT blow count among borings in a homogeneous soil. Plate 3 shows a

set of six boring logs. Onie N value is randomly chosen from each boring and

the standard deviation among them is calculated. Then two N values in each

boring are randomly chosen, the average of the two for each boring is

calculated, and the standard deviation of the boring averages taken. This

calculation with two values from each boring gives a somewhat smaller standard

deviation than the calculation with only one N value. Oontinuing in the same

4 way, the greater the number of N values included in the average for each

boring, the smaller the standard deviation of the boring-averaged N across the

* six borings.
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From Eqn. 12 one should be able to predict this decrease in standard

deviation as the number of terms in each boring average is increased. Namely,

the standard deviation of the boring averages ought to decrease by 1//k as the

number of N values in each boring, k, increases. This assumes that the blow

counts are mutually independent (i.e., their correlation coefficients are

zero). If the blow counts are (auto)correlated, then the standard deviation

will still decrease, although not as quickly as 1/k. The decrease of the

standard deviation of average blow count as the number of N values included in

each average increases is a manifestation of spatial averaging. The larger the

volume of soil (i.e., the greater the number of values in each average) the

more the individual fluctuations balance out.

The size effect factor, R, for the averaging case is defined as the ratio

of the variance of the average soil property within a large volume of soil to

the variance among test-sized volumes,

R = Vmx/VN (36)

in which Vmx is the variance of the mean of the k blow count values,

mN=(I/k)ENi. The ratio of variances rather than standard deviations is used

because it is more convenient for subsequent calculations. When data are

autocorrelated the size effect factor R decreases more slowly than 1/k in the

example above, because the data are somewhat correlated. That is, the data

show 'wavy' variations about the spatial mean and therefore the balancing out

of spatial variations takes place more slowly.

Knowing the autocorrelation function, the exact shape of the relation of

R to k can be calculated. Let the average blow count within a boring be
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calculated as,

1 kmNj a 'j i L, ij (37)

in which N1 j is the it h blow count in borinq j, and *nj -average of the blow

counts in boring j. Presume that if a very large number of blow counts were

measured within the same stratum, the overall mean and standard deviation would

be mN and SN . Then, if the blow counts within each borinq wre widely

spaced--and therefore independent of one another--the standard deviation of

mN3 across the n borings J-I,...,n would be

suN = sN/Ik (38)

The average of the nN) over many boring* would simply be on.

If more than k blow counts were measured in each boring, keeping the total

lenqth of each boring constant, fairly soon the assumption that the data are

independent would break lown. Indeed, were it physically possible to make

measurements very cloee together, as the separation between measur ntu

approached zerr- the correlation between the data would approach 1.0. Such

correlation can be accounted for mathematically using a modi'#d version of

Eqn. 12 to derive the standard deviation of the mean of a eg" f iata.* 1his

is tedious fo>r lisrrete 'lata, bWt fo)r the ontinuoua 7-ase which is really of

more interest the athematical results TA .r uncoplicated.

*Specifically, for Jata X - lxlX n . whi-h exhinit 7orrelations as

reflected in a 7ovaraince matrix :=X, of vhi h t 1h t@rM is xi,x,., the

variance of the average mx - (1/n)7x1 over lifferent samples 3f n data is Vex
f/Int,-1ln , in which 'I,/nw - a vector if Jimension n, each element )f which
ii '/n (Snedecor and Cochran, 1964).
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The continuous case considers the variability of the average of soil

properties which themselves vary continuously along a line or within a volume

of soil. This, for example, is the situation faced in predicting the

variability among footing settlements caused by variation in compression

modulus in foundation soils, or in predicting the variability in factor of

safety against instability along an embankment caused by variation in strength

parameters of the fill.

Fig. 26 shows the effect of spatial averaging in one dimension as a

function of the length over which the averaging takes place. The various

curves apply, respectively, to patterns of spatial variability in soil

* properties which are represented by various analytical models for the

V autocovariance function. The horizontal axis shows the window length over

" which averaging takes place, normalized to the scale parameter of the

autocovarance function. The vertical axis shows the size effect factor R.

Similar graphs for 2D and 3D averaging, and procedures for obtaining R in

special circumstances are given in the report, "Statistical Analysis of

- techni1al Data" (Contract Report GL-87-1).

A handy trick for continuum problems is to note that for many of the

covariance functions used in practice the one-dimensional size-effect factor R

asymptotically decays as,

Vmx I I (37a)

Vm L/260

in which L is the depth over which the averaging takes place, and 60 is the

autocorrelation distance. Fbr L/60 greater than about 2 this approximation

is satisfactory.
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On the other hand, note that if the soil profile were divided into n

layers and the layers were taken as mutually independent, then by Bqn. 12 the

variance of the average mx over all n layers would decay as,

R = 1/n (37b)

Therefore, if a continuous stratum were replaced by independent layers chosen

to have thickness L/260 , the variance of the average mx would be numerically

the same as if the autocorrelation structure had been applied to the continuum.

Thus, the correct solution can be obtained with greatly simplified computation.

A similar approximate approach can be used in calculating size effect factors

for 2-D and 3-D problems.

Spatial Extremes

The importance of spatial variability on calculated predictions depends

both on the volume of soil influenced and on the mode of performance. Fbr

modes of performance which depend on average soil properties within a large

volume of soil, spatial variability partially averages out, as described above.

However, for modes which depend on worst condtions, for example sliding along a

discontinuity or internal erosion in a dam, spatial variability is accentuated.

In this latter case the size-effect factor may be greater than one, and an

alteration may be caused to the mean. These cases are outside the scope of the

present report.

Example: Embankment Stability

In the slope stability calculation of Plate 2 the influence of spatial

averaging apppears appears as the size effect factor R-0.7, but was not

discussed. Here we consider the influence of failure size.

69



The example in Plate 2 comes from a large water resource development

involving low water-retaining dykes founded on soft clays. Three design cases

were analyzed, as shown in Figure 27, these were a 6m single-stage dyke, a 12m

single-stage dyke, and a 24m two-stage dyke. In the two-stage construction the

foundation clays are allowed to consolidate for 12 months under a 12m fill

which is then raised to 24m the following year. The worst case or design

condition is end-of-construction, which is analyzed assuming undrained

conditions. For illustrative purposes, only the analysis of the 24m dyke is

presented here.

The principal uncertainties in the stability calculations are the

undrained strengths of the foundation clays, the engineering properties of the

embankment fill materials, and the geometry of the subsurface stratification.

These are shown in Table 3, with their respective systematic and spatial

variances.

The derivatives of factor of safety (F) with respect to the uncertain

parameters in step 2 were calculated numerically using Simplified Bishop

circular arc and Morgenstern-Price wedge-type failure geometries. For each

design geometry a base-case analysis used all parameters at their means. This

gives the best-estimate-F. For each parameter, additional calculations were

made to numerically determine the derivative of F near the mean. The

derivative was calculated as the ratio of change in F to change in input

parameter, AF/Ax, as shown in Plate 4.

The analysis of the first-stage 12m dyke shown in Plate 4 used circular

arc failure surfaces and Simplified Bishop analysis. The square of the

derivative dF/dx with respect to each principal uncertainty was multiplied by
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the corresponding variances of Table 3 to obtain the contribution of each

uncertain input parameter to systematic and spatial uncertainty in the

calculated value of factor of safety F. These are shown as variance

contributions VF. By Ens. 14 and 25, the sum of these variance contributions

over all the input uncertainties gives the overall spatial and systematic

variances in the calculated value of F. From Plate 4, this total variance is

VF=O.0 30, and the corresponding standard deviation is sF0.17 (-40.030).

The total variance of 0.030 reflects the uncertainty in soil properties

from point to point. Actually, the critical failure wedge for the 25m base

case has a length of about 180m. Thus, some averaging of the point to point

variations of soil properties takes place over the failure surface. A size

effect factor R must be determined to correct for this averaging, and this

factor is multiplied by the spatial part of VF to obtain an estimate of VF for

the whole failure surface.

Following the procedure outlined in "Statistical Analysis of Geotechnical

Data" (Contract Report GL-87-1), numerical integration is used to determine

the approximate extent of spatial averaging over the circular failure surface

with 180m length. This led to the reduction factor R - 0.04 for the spatial

cumponent of variability. That is, the critical failure surface is

sufficiently large that averaging across the surface reduces the point by point

spatial variation by about 95%. Thus, the variance of F for the critical

surface is,

VF  - R VF,spatial + VF,systematic

- 0.04 (0.030-0.012) + 0.012

- 0.013 . (38)
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This procedure is approximate. The variance composition relies on a

linearization, which for stability analyses introduces little error. In

addition, the analysis first minimizes F over trial failure surfaces and then

performs the error analysis on that critical F surface. More is said about the

choice of critical failure surface in Part IV.

Careful examination of Fig. 10 indicates that a relatively weak layer in

the foundation clays occurs just at about the boundary of the marine and

lacustrine clays. Plate 5 shows a calculation to check the stability of the

embankment against failures which might pass through this layer. This

calculation uses a wedge failure geometry in conjunction with the

Morgenstern-Price method of analysis. The result is of considerable interest

in that it illustrates the utility of an error analysis over simple factor of

safety results. Note that the best estimate factor of safety for a failure

wedge through the weak layer is only mF-1.24, as compared to p-i 1 .45 for the

analysis with uses average clay properties. On the other hand, because the

failure zone is well defined and because considerable, specific data were

collected in the weak layer, the standard deviation associated with this

calculation is comparatively small. Thus the reliability of the calculated

result is actually greater than the corresponding averaged analysis. This

reliability is measured by the reliability index 8 which is introduced in Part

IV.

Other Methods for Error Analysis

The approach to propogatinq uncertainty throuqh an engineerinq model used

here is based on a first-order propogation of variance. This is a common

technique and has a variety of names in the various disciplines to whi'h it

finds application. It is sometimes called "first-order second-moment" (FOSN)
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analysis, and sometimes simply "error analysis." However, there are several

other ways to analyze the effect of input uncertainties on output

uncertainties. Among the more often encountered of these other methods in

civil engineering practice are the point estimate method, the adjoint method,

Monte Carlo simulation, and response surface techniques. The intent of this

section is to breifly introduce these other methods and provide an introductory

reference to their literature.

Point Estimate Method

The point estimate method, originally due to Rosenbleuth (1975), uses a

limited number of deterministic calculations made at well-chosen sets of input

parameter values to approximate the mean and standard deviation of a predicted

variable. For example, in the simplest case of Eqn. 26 when both x and y are

scalars, three deterministic calculations are made. These use as input, (a)

the mean of x, (b) the mean plus one standard deviation of x, and (c) the mean

minus one standard deviation of x. The calculated results are used to estimate

a mean and standard deviation of y by the relations,

m g(m * 8 ) + g(mx-s x )
* Y (~s)~~~~ 2 g(m )

(39)
I g(m +s ) - g(m -s )

y 2

Similar techniques have been proposed for multivariate and correlated input.
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The point estimate method gives exact results when g(x) is linear. Thus,

in this particular case the point estimate and first-order technique give the

same answer. They do not necessarily give the same answer when g(x) is

nonlinear.

The point estimate method is convenient for many geotechnical uses,

although the goodness of its approximation appears not to have been widely

studied to date. Nonetheless, its use will probably become more widespread in

the future.

Response Surface Techniques

Response surface techniques are related both to variance propogation and

simulation, finding their most frequent use with models that are numerical,

possibly implicit, difficult to analytically propogate variance through, and

expensive to run. Response surfaces are in essence multivariate regression

analyses. Multiple runs of the model are made in the vicinity of the mean of

the input parameter values and a regression surface of chosen complexity is fit

to the output predictions obtained. This regression surface is presumably less

complicated than the model function itself, and yet can be taken as an

approximation to which variance propogation or other techniques are applied.

At the same time, many fewer runs of the model are made than with simulation,

and thus cost is reduced. Response surface approaches are often applied to

risk analysis problems associated with nuclear power and waste facilities, and

to structural reliability problems (McCormick, 1981).

Adjoint Sensitivity Analysis

Adjoint techniques evaluate the proportionate effect of a perturbation in

input parameters on the resulting perturbation in an output prediction. That

is, they lead to an evaluation of the quantity {(Ayj/Axi) xi/yj}, in which yj
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is the jth component of the prediction and xi is the ith input parameter.

Adjoint techniques are conveniently applied to large numerical models

involving the solution of systems of linear equations. By manipulating the

linear algebra of such solutions, adjoint results can be obtained in the

course of computations. While adjoint techniques are usually used to obtain

sensitivies of a model rather than to perform quantitative uncertainty

analysis, the results can be used to numerically obtain derivatives, and thus

to provide the means for first-order variance propogation (Hadlock, 1984).

Monte Carlo Simulation

M.C. Simulation uses many repetitions of deterministic calculations in

which values of input parameters are randomly generated from specified

probability distributions. The result of simulation is a set of many

predictions of each output parameter which are treated as empirical data from

which statistical inferences of the means, variances, etc. of output

predictions can be made. An advantage of simulation is simplicity. It

requires none of the mathematics of variance propogation, adjoint analysis, and

related techniques. On the other hand, simulation has three important

limitations. It is expensive because the deteministic model must be run many

times. For example, at least several hundred trials are typically needed. It

requires not only means and variances of input parameters, but entire

probability distributions. These may be ambiguous or arbitraty. Finally, the

components of uncertainty are lumped together in simulations. Thus, differing

effects are hard to unravel. Nevertheless, simulation is an important tool

when a model is complicated, involves logical branching, or on other occasions

when variance propogation and related techniques cannot be used (Hammersley and

Handscomb, 1964).
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PLATE 1

SUBJECT: Bearing capacity of a shallow footing.

PROBLEM

SOIL PROPERTIES

qv = 10 kip m, = 36.40 (n-5)

b=5' IVv = (1.14°)2

-------------------- _ ____D=y= 120 pcfIIIIIIIIIIIIIIIIIIIIIIIII IIIIII = 1o pc

(a) BEST ESTIMATE (MEAN) OF BEARING CAPACITY

NY -0.01e 0 . 2 5 0'

qv (1/2) y B N Y

mqv (1/2) (120) (5) MN

= (1/2) (120) (5) (8.6)
= 26.9 kip

(b) SPATIAL VARIABILITY OF BEARING CAPACITY

VNy " (dNy/d ') Vow

VlnNY ' (0 25)2 Vo0
(0.25)2(1.140)2

= (0.29)2

dN

VNy - (d Y )2 VlnNY

= 89.6}2 (0.29)2

= 26.0

Vq - (--IL-) 2  N
q dN VNy

rO = [(1/)(120)(5)j2 (26.0)2

- (7.8 kip)2
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PLATE 2 Page 1/2

SUBJECT: 2-D slope stability analysis 1-berm case

Problem:

RITICAL ARC FOR CASE 2,14-2S.

ISO-

NOTES:
(1) CASES 2 AND 3 USED 14ORIZONTAL GROUND

IS0 SURFACE AS DRAWN

CAt 

N

-(2) CASE 4 USED DEFORMED X -SECTION TOC

REFLECT CONSOLIDATION SETTLEME\:TS

/N 

N 6OTl 

S M

NCRITICAL FOR CSES23 CRTIA FO AS

GO-. - LIMI OF 7ETCI DRAINS

200 IS0 IS0 I40 120 100 so so 40 20 0 20

X AXIS (m.)

(a) BEST ESTIMATE (EXPECTED VALUE) OF FS AGAINST INSTABILITY, 6-mn CASE

=1*84 (by modified Bishop method]

(b) UNCERTAINTY (VARIANCE) IN FACTOR OF SAFETY

VjFS1~~ 2FS ) [i
v(FS ( )2vxj uncertainty in soil parameters

assumed mutually independent.

axi shown on table,
calculated numerically.
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PLATE 2 Page 2/2

SUBJECT: 2-D slope stability analysis 1-berm case

Variance (A&F/Axi) 2.V(xi)

Parameter AFS/Axi Systematic TOTAL Systematic TOTAL

to0.00221 3.0 4.0 nil nil

YFILL 0.068 1.0 2.0 46 92
Dcutnil 0.036 1.0 nil nil

Dtili 0.010 1.0 1.0 1 1
*cu(L) 0.0258 24.9 99.7 166 664

cu(M4) 0.020 7.6 47.6 30 190

VIFS] - 0.0243 0.0947
SD(FS] 0.156 0.308

V3 o*[FS] 0 R=0.7 0.0243 + 0.0493
- 0.0736

(c) RELIABILITY INDEX

FS - 1.0

SFS

1.500 - 1.00

/0.0736

-1.84
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PLATE 3

SUBJECT: Spatial Averaging of SPT Blow Count Data

BORING # 1 2 3 4 5 6

DEPTH

1 2 1 2 8 3 4

2 3 8 5 3 7 4

3 8 6 5 3 7 5

4 6 6 7 0 8 7

5 0 2 5 2 5 0

6 3 2 4 1 9 4

7 3 5 0 0 4 1

8 8 3 0 8 8 7

Average and standard deviation of average of n=1,2, and 8 data:

n = 1 mN  = 3.3 3-

n = 2 mN = 5.7 2
sm  - 2.0 sm

n = 8 mN = 4.2 1-
Sm  = 0.9

II 0--I--I--I--I--I--I--I--I

0 1 2 3 4 5 6 7 8

number of N-values averaged
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PLATE 4 Page 1/2

SUBJECT: 2-D slope stability analysis
24m case, circular arc analysis

Problem:

TICAL ARC FOR CAN E EM-23w.

/-OTES.
(I) CASES I AND 3 USED HORIZONETAL GROUND)

ISO SURFACE AS DRAWN

(2) CASE 4 USED DEFORMED X- SECTION TO
REFLECT CONSOLIDATION SETTLEMENTS

71 140.*Mw

120-H L .15w I -L2 "M.-

'~-6... .~' -. 2. STAGr I
IDo

ILL T LI iT RTICAL D AINS ... 77

X AXIS I.)

(a) BEST ESTIMATE (EXPECTED VALUE) OF FS AGAINST INSTABILITY, 24-mn CASE

FS=1.43 [by Simplified Bishop method]

(b) UNCERTAINTY (VARIANCE) IN FACTOR OF SAFETY

V(S]ax 2V(i uncertainty in soil prmtr

assumed mutually independent.

axi shown on table,
calculated numerically.

80



PLATE 4 Pae 2/2

SUBJECT: 2-D slope stability analysis 24. case

Variance (AFS/z i )
2 .V(X i )

Parameter AFS/Ax i  Systematic TOTAL Systsmatic TOTAL
x 10-.

Intact Clay

T( ) 0.0018 13.3 41.5 nil 1
T(L) 0.012 26.3 88.5 38 127

Consolidated Clay

T(4) 0.0021 52.7 111.5 2.3 4.9

T(L) 0.009 62.0 124.4 so 101
0 0.0088 3.0 4.0 2 3

YFILL 0.055 1.0 2.0 30 61

V(FS] = 0.0122 0.0298
SD[FS] = 0.111 0.173

Vave(FS] 4 RuO.04 - 0.0122 + 0.0012
= 0.0134

(C) RELIABILITY INDEX

FS - 1.0
B

SFS

1.43 - 1.0

/0.0134

= 3.68
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PLATE 5 Page 1/2

SUBJECT: 2-D slope stability analysis
24m case, weakest layer 180m

DATE: _______________ REFERENCE: _________

Problem:

- ~ UTKAL ANC Pop CABS 2. -29.

-NOTES

(I) CAME * U"D UE OUSO I & - SETOIC.

*C - 1PL9C' C0OWIOATbO6 (YTLE9N1

STAGE 2

.00-,2a. STAGE I,

UTeCAL POO CAMS 22a -CSal 90 A

L.- LS11 OF VSI'?ICAL DRAM

PO( 0( 1" W let 00C KS G 40 C to 0 to

2 Axis 1.

(a) BEST ESTIMATE (EXPECTE) VALUE) OF FS AGAINST INSTABILITY

PS - .24[by Morgenstern Price Method)

(b) UNCERTAINTY (VARIANCE) IN FACTOR OF SAFETY

V(FS) ES ) ji
axi uncertainty in soil parameters

assumed mutually independent.

uax 1  &LU ~a nu3 africally.
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PLATE 5 Page 2/2

SUBJECT: 2-D slope stability analysis 25m case, weakest layer 180m

Parameter AFS/Axi Variance (&FS/Axi)2.V(xj)

Systematic TOTAL Systematic TOTAL
X 10-4

*10.005 3.0 4.0 1 1

YFILL 0.048 1.0 2.0 23 46
Dcrust 0.007 0.036 1.0 Nil Nil
Dtill 0.0 1.0 1.0
Cu(L) 0.028 Cov(8)-v.15 5.6 23 44
CU(M 0.013 7.6 47.6 13 80

V(FS] - 0.0060 0.071
SD(FS] - 0.0775 09131

Vave[FS] @ R-0.0 4 - 0.0060 + 0.0022
M 0.0082

(c) RELIABILITY INDEX

FS - 1.0

8 FS

1.24 - 1.0
-------------------------

/0.0082I - 2.69
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PARAMETERS
(properties '--wGeometry)

INPUT - OUTPUT
(Load) MODEL -(Prediction)

Figure 25. Krror Propagation Through the Model y - q(x).
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PART IV: THE RELIABILITY INDEC

In traditional geotechnical analysis the adequacy of a design is expressed

by a factor of safety, defined variously as the ratio of capacity to demand,

Facapaci ty (0
-demand (0

The factor of safety makes no allowance for uncertainty.

When performance is predicted by both a best estimate and a measure of

uncertainty, a more complete safety index can be used. On~e index which

combines both best estimate and uncertainty is the 'reliability index', S. In

essence, B measures the number of standard deviations separating the best

estimate of performance from some unacceptable or 'failure' value. Part IV of

this report defines the reliability index 0, shows its relationship to factor

of safety F, and gives examples of its use.

Definition of the Reliability IndexB

An error analysis translates the effect of uncertainties in engineering

properties to uncertainties on calculated results. Using any of the techniques

of Part III--except Monte Carlo simulation--uncertainties in engineering

properties are described simply by their means, standard deviations, and

* correlations with other properties. These means, standard deviations, and

correlations are translated to means, standard deviations, and correlations

for calculated predictions.

Such a description of uncertainty contains more information than can be

incorporated in a factor of safety, yet does not allow so-called probabilities

of failure to be determined (i.e., probabilities that the actual performance of
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a facility in inadequate compared to some defined limit state). Determining

probabilities of failure requires information on the distribution of

probability over the predicted performance y, and no such assumption is made.

Instead, the mean and standard deviation of y are combined in an index, 8 that

describes reliability as the number of standard deviations seqarating the best

estimate of y from its defined failure value yo,

B - yf "reliability index" (41)

Lower values of Bimply lower reliability. 0B0 means the best estimate of

performance equals the failure criterion, that is my-yf. 8)0 means that my>yf,

because the standard deviation is always positive. Typical $'s for current

geotechnical design range from 2 to 4.

The reliability index is a useful measure because it balances the safety

implied by a best estimate against the uncertainty in that estimate. Thus, 0

can distinguish between, (i) a high mean factor of safety with correspondingly

high uncertainty, and (ii) a low mean factor of safety with correspondingly low

uncertainty. In Fig. 28, Design #1 has a higher mean factor of safety (F)

than design #2, but also a larger standard deviation. Since the probability of

inadequate performance is related to the area under the frequency distribution

to the left of F=1.0, although design #1 has a higher mean F it also has a

greater likelihood of performing inadequately. The reliability index captures

this distinction.

The reliability index 8 is a direct measure of the reliability of a

calculation with respect to facility performance. B measures the confidence
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one should have that errors in a calculation are small relative to the margin

of safety separating a best estimate from same design limit.

The reliability index B is not a statement of probability. However, in

some situations it is convenient to relate S to a nominal probability of

failure, pf, using a Normal (i.e., bell-shaped) distribution of uncertainty on

y (Fig. 29). Ebr 8 less than 2 or 2.5, nominal pf is insensitive to the

assued shapae of the distribution of probability over y; however, for 8 larger

than 2.5 nominal pf is sensitive to the distribution chosen.

Limitations of B

The reliability index B defined by Eqn. 41 is useful but has limitations.

The most important limitations of 8 are,

1. 0 can be load path dependent.

* -. 2. 0 is not invarient to certain mechanically equivalent mathematical
* transformations of the definition of failure.

Each of these limitations also applies to the factor of safety F.

The load-path dependence of $ can be illustrated by considering the

bearing capacity of an unanbedded footing sub~ject to an inclined load (Fig.

30). The combinations of vertical load V and horizontal load H which define

the limiting conditions for loads on the footing form a curved envelope.

Combinations of V and H inside the envelope can be resisted by the footing;

combinations outside cannot.

Starting from initial load Po, two possible load-paths to failure are, (1)

increasing the horizontal load H until the failure envelope is reached at P1,

and (2) increasing the vertical load V until the failure envelope is reached at

P2 Fbr the horizontal load path the factor of safety is
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F1 M --2 - (42)
H- H1

For the vertical load path the factor of safety is

Fv =- (43)
V V1

Depending on the location of Po within the safe region, the factors of safety

FH and FV can be arbitrarily changed independent of one another. Cnly in

exceptional situations will FH and FV be the same. Exactly the same load-path

dependence applies to the respective reliability indicies 8 H for horizontal

loading and 8V for vertical loading.

The noninvariance of B can be illustrated by considering a rock block

sitting on an inclined slope with asperities (fig. 31). Depending on how the

forces are resolved, the factor of safety against sliding can be stated as,

_ tan

F1  = tan ; (44)
tan( 8-i)

or as,

tan (0+i) (45)
F2 = tan(O)

* Arbitrarily choosing parameter values, let e-250 and i=5, both known. Let the

best estimate of 0 be mo=400 and the standard deviation be so=30. Then, the

mean factors of safety and B's corresponding to Bqns. 44 and 45 become,

raf a2.31 81 - 5.31 (46)
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MF2 -2.14 82 5.08 (47)

Advantages of the Reliability Index 8

Error analysis of the type presented in this report is in essence a

replacement for traditional sensitivity analysis approaches to evaluating the

reliability of engineering calculations. The reliability index 8 is a

convenient single measure which combines the two res~ults of an error analysis,

namely the best estimate and the standard deviation.

In practice, the reliability index a has important advantages for

engineering analysis and desigr.. First, it provides a traceable path through a

set of calculations by which uncertainties are accounted for. Thie principal

benefit of this traceable path is quality assurance. Second, it provides a

means for explicitly incorporating the extent of information gathering with the

reliability of an engineering prediction. The benefit of tying information to

reliability is that the quantitative basis of predictions can be demonstrated.

Third, it provides a means for increasing the consistency of design decisions.

The benefit is that the conservatism of design, reflected in design factors of

safety, can be balanced against the confidence of a prediction. Each of these

three capabilities expands the engineer's ability to produce a quality design.

Quality Assurance

Quality assurance is a must in civil engineering. Unlike many branches of

engineering, the civil engineer typically designs and builds a single copy of

his product. The concept of an acceptable failure rate, which is widespread in

manufacturing and electronics, is foreign to the damn designer or bridge

engineer. The means for assuring quality in engineering is explicitness.

Error analysis and B-values provide that explicitness by forming an accounting
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sheet for uncertainties.

Relation of Data to Confidences

Using factors of safety, the influence of site characterization iat% ifn

reliability and on design factors of safety is impli-it. There iq no 4uatita-

tive tie-in between information and confidence in performance preditions. 1 91 e

3 index provides a means for quantifying the effect -f informati3n -in

confidence, in that information influences the standharA ieviation ,tw

prediction and thus B.

Consistent Factors of Safety

As shown schematically in Fg. 28, the reliability ot a predi:t-i-n of

engineering performance is not completely described by F alone. A ntqh mean

factor of safety combined with a high standard deviation may be a less reliable

prediction than a low mean F combined with a law standard Aeviation. The

reliability index, 8, captures this distinction.

The choice of design factors of safety for different -onditions ,-an be

made consistent, in that the same level of reliability is implied, by setting

the corresponding reliability indices equal. A shown in FIq. 12, for tw

design cases in which the coefficients of variation of calculated F's are 0.10

and 0.20, respectively, the B's corresponding to expected design F's of 1.5 are

different:

Mean Factor of Safety

coefficient of variation

QBO-1 Q2pO. 20

1.50 1.18 1.43
2.00 1.25 1.67
3.00 1.43 2.50
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ru iotAin F's implyinq zonsistent reliability, at say B=2, the target values of

aean tAr7tor )f safety wuold nave to be different in the two cases. Thus, error

V aa:14sis priviles A vehicle for improving internal consistency of criteria or
'o,

stAndaris fir Jesi4n.

Example: Bearingl Capacity of a Shallow Footing

Focr trw fIotiiq iescribed in Plate 1, uncertainty in the soil friction

. e se- iy Jata scatter led to a best estimate (mean) of bearing capacity

l2h.4 csf .anJ a standard deviation of 7.8 ksf. If the design stress were 10

ks! -na . Lt,.ii be the reliability index R for the calculation? Applying Bin.

.qv - 4 vo

V

2b.4 kaf - 10 ksf (48)
7.8 ksf

-2.2

Example: Footing Settlement on Sand

Plate 6 shows a settlement calculation for shallow footings on

appoximately ten meters of uniform wind-blown sand. The facility is an

industrial plant founded on a large number of footings. The site was

characterized by SPT borings, predictions of settlement wre made based on the

N values, and settlements were subsequently measured.
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Calculating Footing Settlement

Footing settlement can be predicted by any of a number of equations. Peck

and Bazaara's equation is a modification of the Terzaghi and Peck envelope,

SM2Aq 2b 21 /b (49)

in which p is settlement (inches), Aq is allowable applied stress (TSF), mN is

(vertically) averaged corrected blow count, and b is footing width (ft).

Water table elevation is ignored. The term involving D/b, where D=embedment

depth is a depth correction factor. In the present case D/b=0.5. For square

footings of design width b-10', the best estimate of p at the allowable stress

of 3TSF (6ksf) is shown in Plate 6.

Spatial Component of Settlement Uncertainty

The variance of p due to uncertainty in MN is calculated by noting that p

is inversely proportional to mN. Therefore, from Eqn. 35,

p *-- QmN (50)

mN is the average blow count within a depth b equal to the footing width of the

footing and thus its variance and coefficient of variation are less than those

of the point by point blow counts, M. For this site blow counts are taken

every 5 feet, thus the coefficient of variation of the vertically averaged blow

counts was flmN-0.44. If the distinction between real soil variability and

measurement noise is ignored, the coefficient of variation of settlement p that

one would predict from the data scatter should be about 0.44. That is,

ignoring noise in the data one would expect the spatial variability among
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footing settleatns to have Ap-O.44. Alternately, Eqn. 30 could have been used

to find the same result with more effort.

In comparison, the observed values of total settlement for 268 footings at

this site have a mean of about 0.35", and a standard deviation of 0.120. thus,

the observed variability has a coefficient of variation 0=0.34, less than one

might expect based on the scatter in the N-values.

The discrepancy, of course, is caused by measurement noise, which must be

removed from the data scatter before an accurate estimate of spatial

variability in the footing settlements can be obtained. The noise content of

the data is estimated from the autocovariance function (Fig. 33) to be about

50% of the data scatter variance. This means that,

Qsoil)2  = (Odata) 2 (0.5) - (0.44)2(0.5)
(51)

W (0.31)2

which is close to the Qp-0.34 observed in the settlements records.

Systematic Component of Settlement Uncertainty

In addition to spatial variability, the limited number of borings causes

statistical error in the prediction of average settlement. With 50 borings

and hence 50 SPT measurements at any elevation, the statistical error in the

estimated mean blow count at any elevation in the upper levels is

VONu :: vN/5o . (52)

This reflects uncertainty on the average settlement of all the footings at the

site.
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The settlement model itself introduces bias which differs from site to

sits. Flor Eqn. 49 comparison data of predicted vs. observed settlements yield

a man bias (Fig. 34) of mb= 1 . 4 6 and a standard deviation of sBb = 1.32,

in which b-observed settlement/predicted settlement. Orrecting the earlier

estimate for this model bias,

sap' - mb mp , (53)

in which mp, is the corrected mean settlement. The variance of the corrected

settlement is found using Eqn.32 as,

VP * Vb mP2 + mb 2 VP (54)

The poor correlation of the settlement model to actual footing performance

introduces a large model error if data are unavailable for calibrating the

model to a particular site. This model error is difficult to divide into

scatter and systematic parts because data of the sort used to calibrate models

are mixtures from many sites and model tests. However, the calculations in

Plate 6 attest to the importance of model uncertainty in settlement

predictions.

In service, the footings were exposed only to 40 to 70% of the allowable

load used for predicting settlements. Also, footing dimension and embedments

varied. Therefore, the mean predicted settlement and the mean observed are

not comparable. However, because 8jn. 49 is multiplicative, 0p should be

unaffected by these differences.

96



Example: Final Consolidation Settlement

Javette (1983) applied a similar approach to the problem of consolidation

settlement of San Francisco Bay Mud under a uniform surcharge. While his

analysis differs in notation and somewhat in form from the methods developed

here, in principle it is the same. For this illustration, however, Javette's

analysis is slightly rearranged to fit the present format.

In calculating the mean and standard deviation of total settlement at the

end of primary consolidation, Javette makes several assumptions: (1) unit

weights are known, (2) compression and recompression ratios are described by

means, variances and covariances, and (3) the trend of overconsolidation (i.e.,

a function of maximum past pressure) with depth can be approximated by a smooth

mathematical curve. Then, settlement is calculated by dividing the Bay Mud

stratum into k hypothetical layers with thickness twice the vertical

autocorrelation distance, and summing the settlement of each layer to obtain,

k
p = log (Ovm'/avo') CRC,c + log (avf'/lvm') CRe,r (55)

i

in which 0vo', Gym' and avf' are the in situ vertical effective stress, maximum

past pressure, and final vertical effective stress, all in layer i,

respectively; CRc,r is the recompression ratio, and CRc,c the virgin

compression ratio. The mean settlement is obtained by substituting the means

of avm', CRc,r, and CRC,c into the equation, avo' and avf' being assumed known.

The components of uncertainty adopted by Javette are shown in Table 4.

Thus, the variance of end of primary settlement is calculated from Eqn. 31 as

shown in Plate 7. The layer thickness are chosen using the trick described in
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Part III, so the variations of properties among layers can be taken as

independent and R-1.

To compare predicted standard deviations with the range of settlements

observed in the field, the rate of consolidation had to be incorporated in the

calculations. Some of the field measurements were taken at times prior to end

of primary compression, and some included secondary compression. Pbr this

purpose the coefficient of consolidation cv was assumed known and the

coefficient of secondary compression was described by a mean and variance. In

fact, cv could also be described as an uncertain parameter, and in many

consolidation problems it is an important source of uncertainty. Javette,

reasoning on the basis that 95% of the area under a Normal (bell shaped)

distribution lies within ±1.96 standard deviations of the mean, used ±(l.96 sp)

as a predicted range of settlement. This range is shown in Fig. 34 comparing

favorably with the field observations.
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Table 4: Variance Assumptions for 1D Settlement

Variance Component Contribution

Spatial variation -- equal to the data scatter of the
consolidation parameters Cc,c, Ce,r°

Measurement noise -- unknown and neglected.

Systematic error -- statistical error in Ce,c and Ce,r
due to limited numbers of tests.

-- differences in the maximum past
pressure profile from one location
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PLATE 6 Page 1 /3

SUBJECT: Calculation of footing settlement on sand.

PROBLEM
Aq - 3 TSF SOIL PROPERTIES

B-10' KM - vertically averaged
-------- ------ SPT blow count, corr'd.

I////// __________ ///// - 25 bpf
D-5' /////////

-N 11 bpf
allowable p - 1

Q- 11/25 - 0.44

(a) BEST ESTI14TE (MEAN) OF SETTLEMENT

02A 2B 2 1 2.3 2.10 2 1

p "mN )1 (-1-B D4 D 25s)(;j-) ( /0

m s 0Mb mp, in which b - model bias correction as in Bluation 53

- (1.46)(0.70") - 1.02"

(b) UNCERTAINTY (VARIANCE) OF SETTLEMENT

Spatial Variability

from Eqn. 35, 9l~ p A

sip an - V(NJ - /V[NJ/2 . /112/2 .0.32

MN MN 2

VP (IP up )2  - (0.32)(0.70n)12 - (0.22")2

V0. - C mp')2  1 (0-32)(1.02")12 (0 .32K)2
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PLATE 6 Page 2/3

SUBJECT: Calculation of footing settlement on sand.

(b) UNCERTAINTY (VARIANCE) OF SETTLEMENT )

Systematic Error

Statistical Estimation Error:

9mN - sj 2 /n - (0.32)2 / 50 - (0.05)2

1 p = QmN - (0.05)2

VP - (Qp *p)2 - [(0.05)(0.7)12 ( (0.04)2

Vp, - (SIP mP ' )2 [(°.05)(1.02)] 2  " (0.05)2

Model Bias: Vp, VB mp2 + MB2 Vp

- (1.32)2 (0.70n)2 + (1.46)2(0.31 x 0.70")2

-0.85 + 0.10- (0.98)2

(c) RELIABILITY INDEX

Spatial Variability Alone

I O. '70- - 11L 1.36sP 0.22"
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PLATE 6 Page 3/3

SUBJECT: Calculation of footing settlement on sand.

Spatial Variability + Systematic Error

Total uncertainty - spatial variability + systematic error

V- (0.22)2 + (0.04)2 -(0.23)2

V (0.32)2 + (0.05)2 + (0.98)2 -(1.0)2

without model uncertainty:

PO- 1.0- 0.70.3ap, = SP 0 = 0.23"13

with model uncertainty:

MAP P 1.00 - 1*02" -0.09
Op SP 0.230
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PLATE 7 Page 1/2

SUBJECT: One dimensional consolidation settlement.

SITE CONDITIONS: The site lies on the eastern shore of San Francisco Bay
where in recent years a uniform layer of cohesionless fill
has been placed over Bay Mud . The Bay Mud systematically
varies in thickness across the site, and is presumed to be
free draining at both top and bottom. A large number of
consolidation tests were performed on samples of Bay Mud
from the site.

PROBLEM: Calculate 1-D final consolidation settlement under a 2m surcharge.

(a) BEST ESTIMATE (MEAN) SETTLEMENT

n

p - E Hi { log(avm'/Ovo').Ce,r + log(Ovf/Ovm').Ce,c }
i

Hi Hi
layer log ACv' log ACv'

........ stress .C ,r *Cc,c

- - •----' 1 0.035 --
•- - 2 0.034 0.023

- - - 3 0.007 0.110
-- d * 4 -- 0.151
Se * 5 -- 0.128
Sp * 6 -- 0.112
St * 7 -- 0.100
- - - - h * 8 -- 0.090
----- . 9 -- 0.083
---- - 10 -- 0.076

_ • 11 -- 070
Ovo' -f'

m 0  = 1.02m

" The first column in the table gives layer number in a vertical profile;
the second gives layer deformation due to recompression from avo' to a
avf' less than Ovm', or to avm' ; the third gives layer deformation due
to virgin compression from avo' to a avf' greater than 0vm', or from
C_ v to Ovf' 1
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PLATE 7 Page 2/2

SUBJECT: One dimensional consolidation settlement.

(b) UNCERTAINTY (VARIANCE) OF SETTLEMENT
Hi 2 x10- 4

Spatial Variability, VI: layer log2 Aov  log2A~v '

V[CC,r] V[Ce,c]

The second and third 1 0.616 --
columns, respectively, show 2 0.581 0.70
the variances of individual 3 0.246 1.61
layer deformations due to 4 -- 2.98
uncertainties in soil 5 -- 2.19
parameters. The sum of the 6 -- 1.68
layer variances is the 7 -- 1.34
total variance in 8 -- 1.10
settlement prediction. 9 -- 0.91

10 -- 0.77

11 -- 0.66

Vj(p] = 1.54x10-
3 m2

Uncertainty in Evm':

3 3
V(p) - z (ap/aoam') 2 V(Ovm') - Z ((Hi/ova')(Ce,r-Cc,c)) 2 V(%vm')

i-1 i-1

= 1.28 x 10-3m2
Statistical Error, V3:

91+2(Cc,.) - 0.128

Q3(Cc,.) - (0.128)/(/n-32) = 0.023 - p3(p)

V3 (P) - [93(p) E(p)] 2  [(0 .023)(1.02')]2 - 0.55 x 10-3m2

Variance Composition:
component: contribution:

spatial variability 1.5, xlO- 3

uncertainty in avm' 1.28 x10- 3

statistical error 0.55 x10- 3

TOTAL Variance - 3.37 x10- 3 m2

S M 0.058m

Qp = 0.058/1.02 - 0.079
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Figure 28. Comparison of Two calculations of Factor of safety.
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Figure 29. Relation of Reliability Index to Nominal Probability of
Failure, Based on Normal Distribution.
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Figure 31. Non-invariance of Factor of Safety and Reliability Index
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Figure 32. Consistent Factors of Safety Based on Equal Reliability
Indices
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Figure 33. Horizontal Autocorrelation f or SPT Blow Count Data.
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PART V: RISK ANALYSIS

This final part of the report touches briefly on the concept of risk

analysis. The intent of Part V is to describe the risk analysis approach to

design and to show its relationship to the error analysis procedure presented

in previous sections of the report.

Throughout the report, the notion of probabilities has been avoided. 1lo

perform an error analysis and to calculate a reliability index S for some

design, no assumptions were necessary on probabilities, probability

distributions, and so on. The only probabilistic assiumption that was needed

was that uncertainty could be expressed by a standard deviation. For risk

analysis this convenient state of affairs is no longer true. Nuzmerical values

of probability are needed to calculate risk costs.

Risk Analysis Defined

Risk analysis is a quantitative approach to balancing design conservatism

against the possible consequences and likelihood of adverse facility

performance. Of necessity, risk analysis deals with two sides of the design

problem. Oni the one hand it seeks to quantify, usually in numerical

probabilities, the likelihhod of adverse performance as a function of design

decisions. On~ the other hand it seeks to quantify, usually in monetary values,

* the costs associated with adverse performance should a facility not perform as

predicted.

Risk analysis attempts to balance the direct costs of constructing a

A facility against possible costs associated with failure. 'Typically, the more

conservative a design is made, the greater the initial cost but the greater the

confidence that the facility will perform satisfactorily.
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Conversely, the loes conservative, the loe the initial cost but the lower the

confidence in satisfactory performance. in this example, if a design in too

conservative, high initial costs are incurred unnecessarily; but if a design is

too unconservative, the potential for failures is unacceptable. isk analysis

intends to provide quantitative guidance in striking a balance between cost and

risk.

Practical implications of the Reliability index

Error analysis is a systematic procedure to account for potential errors

in engineering calculations. it leads to a best estimate prediction of

engineering performance, and to a measure of the confidence that should be

placed in the prediction. This measure of confidence is the standard deviation

of the possible magnitud~e of error in the calculation lending to the

-* prediction. The best estimate and standard deviation are combined via flqn. 41

into a single index, B summarizing the reliability of the prediction in light

of a specific design standard or failure criterion. The reliability index B

summarizes the confidence one has that the calculation has not erroneously led

to a prediction of satisfactory performance.

In a simple way, the question of predicted performance vs real performance

can be sumarized in the Table 5S. The horizontal division shows how the

facility actually performs. The vertical division shows what the engineering

calculation predicts. The four boxes are the possible combinations of real and

predicted performance.

Fram a practical view, whenever the calculation indicate unsatisfactory

performance, either the design or the method of calculation is changed. Thus,

the first row in which the calculations indicate satisfactory performance is of
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most concern. In Box 1 at the upper left the calculations correctly indicate

satisfactory performance. In Box 2 at the upper right they incorrectly

indicate satisfactory performance. the former leads to an acceptable design.

The latter leads to failure. Pbr a calculation that indicates satisfactory

performance, the reliability index $ expresses the confidence of lying in Box 1

rather than Box 2. In the jargon of statistical hypothesis testing, the

reliability index $ expresses the confidence that a type 11 error has not been

made. A type 11 error is made when an hypothesis--in this case the hypothesis

that the facility will have satisfactory performance--is accepted incorrectly.

Probability of unsatisfactory Performance

Most risk analysis requires numerical values for the probability of

adverse performance of a facility. To' calculate a numerical value of

probability from the reliability index B some assunption is needed on the

probability distribution of possible uncertainties or errors. The probability

distribution is a mathematical equation which has the property that areas under

its curve within some interval of values equals the probability that the

uncertain quantity in question lies within that interval. Pbr example, in Fig.

35 the probability that the uncertain quantity x is less than xo equals the

crosshatched area under the probability distribution. The probability that x

lies in the interval between mx and (mx + sx) equals the stippled area. Since

x must lie somewhere, the total area under the probability distribution equals

1.0.

A convenient and often reasonable assumption is that the probability

distribution has the bell-shaped form of the Normal distribution (Fig. 36).

Empirically, the Normal distribution is often observed to model geotechnical
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data wall, and mathematical theory suggests that many types of errors are well

represented by Normal distributions.

The difficulty with adopting any particular mathematical function to model

the distribution of probability in geotechnical problems is that too few data

of ten exist by which to verify that the chosen distribution provides a good

f it, particularly in the outer tails. The Normal distribution is adopted

because it is convenient and because it has been found to fit most geotechnical

data as well as other common distribution functions do. Actually, the areas

under many common distribution functions--for example, the lower part of Figure

36 which shows areas under the Normal curve--are much the same within 2 to 3

standard deviations of the mean, and so within this region little error is made

by adopting the Normal distribution. Figure 37 shows the areas under the lower

tails (i.e., probabilities of failure) of Normal, logNormal, and Gamma

distributions as a function of mean factor of safety (F) and coefficient of

variation of F. They are quite similar for 9~'s up to 0.2 and probabilities of

failure down to 0.01. Nevertheless, to emphasize that the probabilities being

calculated are based on a presumed shape for the probability distribution, it

is sometimes convenient to refer to them as "nominal probabilities."

Risk Cost

while the concept of direct construction costs is familiar, the concept of

risk cost is not. It is generally analogous to the cost of liability and

casualty insurance. Since the government self-insures, this principle has not

often been considered in the past, yet it is a real cost. In a qualitative

sense, the greater the likelihood of unsatisfactory performance and the greater

the associated consequences of that performance, the greater the risk cost.
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The most common quantitative measure of (economic) risk cost is the product of

the probability of unsatisfactory performance times the dollar value of the

consequences associated with unsatisfactory performance,

Cr - Pf . Cf , (56)

in which Cr - risk cost, Pf - probability of "failure," and Cf - dollar cost

associated with failure. Fbr example, if the probability of a shallow footing

settling excessively were 0.05 and the cost associated with that settlement

were $1000, the risk cost would be Cr - (0.05)($1000), or $50. In principle,

reducing that risk through more conservative design would be worth no more than

the $50.

The risk cost of Ein. 56 is a convenient quantitative measure of risk for

comparing design alternatives, but it has two important drawbacks. The first

is that it does not include non-monetary consequences of inadequate

performance, for example, health and safety consequences. Second, it equates a

small probability of a large consequence with a moderate probability of a more

modest consequence, something many people are not comfortable doing. Each of

these issues is outside the scope of the present report. Considerations of

non-monetary consequence in risk analysis, particularly loss of life, are

discussed by Mishan (1976). The considerations are the same for risk analysis

and cost-benefit analysis. Qonsiderations on the question of liow-probability

high-consequence failures are discussed by Raiffa (1964). These, too, arise in

many areas of policy analysis.

optimal Design

Optimal design means a balancing between direct cost and risk cost. As

the conservatiom of design increases, as for example by increasing the factor
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of safety, direct cost also typically increases. At the same time, however,

the probability of unsatisfactory performance and hence the risk cost declines.

The total cost, which is the sun of these two,

Ctotal - Cdirect + Crisk , (57)

reaches a minimum somewhere along the way (Fig. 38). From a monetary risk

viewpoint, this point of least total cost is the optimal design. Plate 8

illustrates the result of a risk assessment of the embankment design of Plate

4.

Value of Information

Risk analysis can also be used to assess the value of information to a

geotechnical design. Increased information reduces the uncertainty in a

prediction of engineering performance, and by so doing reduces the probability

of unsatisfactory behavior and thus risk cost. This is shown schematically in

Fig. 38. Increasing the amount of information about site conditions or about

measurement or model biases lowers the risk-cost for a given value of the

design factor of safety. It does so by reducing statistical error and by

reducing calibration errors in testing.

The value of additional information can be calculated by comparing the

total cost curves with and without the new information. In a situation where

health and safety are not considerations, the difference in optional cost is

the maximum amount one should be willing to pay for the new information.

Detailed discussion of value-of-information calculations for geotechnical

engineering problems is outside the scope of this report. A introductory

presentation of general principles is given by Raiffa (1964), and a more
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detailed application to geotechnical data collection for underground

construction isa given by Einstein, et, al. (1978).
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Actual Performance

ACCEPTABLE UNACCEPTABLE

p
P e

rr acceptable failure
e f ACCEPTABLE design
d o
i r
cm
t a

dn
d c

e <redesign or reanalyze>
UNACCEPTABLE

Table 5. Hypothesis of Adequate Performance.
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PLATE 8

SUBJECT: Optimization of factor of safety for embankment stability

PROBLEM: Determine design factor of safety which balances marginal
changes in direct cost and in risk cost for the analysis of
Plate 4.

SOLUTION: Construction Cost: Based on engineering cost estimates,

Cc w ln(l + 1.146 F)

in which Cc is direct cost in dollars, and
F is the design factor of safety.

Risk Cost: Based on B n. 56,

Cr - Pf Cf

Assume upper and lower bound costs of

Cf+ - $109

Cf- - $109

Nominal probabilities of failure based on Fig. 29 and
calculations of Plate 4 and extensions to other F's.

Result: Cost model: CC= 01 (1+1.146F)

10
-9-

S\ 10 10=C

8-
7 PC,..L CTOTAL

o F

0
;6

SO

4
0

C OPTIMAL F's

0

Design 02.
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Appendix A - SYMBiL LIST

a,b - regression coefficients
ai - constant
B - measurement bias correction coefficient
b - footing width
Cf - cost of failure
CR - risk cost
Cx(6) - autocovariance function for separation distance 6
Cxy - covariance of x and y
-- C - covariance matrix
CRcc - virgin compression ratio
CRer - recompression ratio
cu - undrained strength
d - embedment depth of footing
D,d - geometric properties of scatter graph
e - random measurement error
fi - cumulative frequency of observation i
E - elastic modulus
F - factor of safety
FV - field vane
G - matrix of derivatives with ijth element dyi/dxj
g(x) - deterministic function of x
H - horizontal load
H,h - geometric properties of scatter graph
Hi - stratum thickness
h - SHANSE strength parameter
i - dilation angle
k - counter number
mx  - mean of x
n - number of measurements
L - length
L[z] - likelihood of z
mv  - vertical compression coefficient
N - SPT blow count: bearing capacity factor
& R overconsolidation ratio

PBC - probability of bearing capacity failure
Pf - probability of failure
P0  - probability of excessive settlement
Pr(.) - probability of
Ponq - SHANSE strength parameter

q n applied footing stress
qvo - design stress
qv bearing capacity
rxy correlation coefficient of xy

'ro  - autocorrelation distance, C,(ro)-1/e
R - size effect factor
Rx(6) - autocorrelation function over separation distance 6
Ox  - standard deviation of x
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Appendix A -- SYMBOL LIST
(continued)

t - Student's t statistic
ti  - trend
u - residual variation about regression line
V vertical load
Vx  variance of x
w x  range of x
x - soil property
x vector of data X1,...,Xn
xi, = ith measurement of property x, or x at location i
xma x  - largest value of x

xmin - smallest value of x
0.25 - 25th fractile of x
NO .5  50th fractile of x
x0.75 -75th fractile of x
y - predicted performance variable
Yo - design specification on variable y
z - measured soil property, depth

a - critical probability level
B reliability index
B - vector of regression coefficients
y - soil density
6 - separation distance
60 - autocorrelation distance
C - strain
n - point of expansion in Taylor's series
a - slope angle
P - BJerrum's FV correction factor
v - degrees of freedom
p settlement
a - stress
avm' - maximum past pressure

vo' - effective vertical stress
-Ovff' - final consolidation stress
"- 9 - effective stress friction angle
ax  - coefficient of variation
w - outlier test statistic
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